Comparing Metal 3D Printing Technologies
When considering adoption of metal 3D printing, understanding the different technologies available on the market can help organizations determine which types of printers best satisfy their specific manufacturing needs.
While metal 3D printing technologies use a powder-based media and a high energy event, each of these processes transforms powder to solid metal parts in a completely unique way.
Read this blog post to learn about the three leading types of 3D metal printer technologies — metal FFF (Fused Filament Fabrication), powder bed fusion, and binder jetting. This post will cover how each type of metal 3D printer works, their unique differentiators and considerations, current outlooks and long term views.
Metal Fused Filament Fabrication (Bound Powder Extrusion)
Metal FFF is the most accessible and safe metal additive manufacturing technology on the market today.
How Metal FFF Works
This process uses bound powder feedstock made from metal injection molding media (metal powder bound together in waxy polymers). It uses a debinding system and a sintering furnace.
Metal FFF is a three step process. It uses bound powder and sintering, a high energy process that turns 3D printed parts using a metal powder media fully into a solid metal:
Differentiators
- Affordability. Ownership of a metal FFF printer is a significantly lower investment to own and operate than other metal printers.
- Safety. Metal 3D printer filament consisting of bound powder is relatively safe to use, and machines can be used effectively with minimal training and PPE.
- High first part yield. This is accomplished by using a bulk sintering process, which introduces fewer internal stresses than selective sintering.
- Wide material availability. In the future, there is potential for even broader future state compatibility. Industrial 3D printer metal types may include exotics and alloys.
Considerations
- Not optimized for solid parts. Typically, the machines print parts with closed cell infill. While metal FFF can print solid parts, this can either lead to increased print times or limit the variety of parts that can be manufactured.
- Near net shape parts. While parts can be post-processed to hit tight tolerances if needed, the metal FFF process typically prints near net shape parts.
Current Outlook
Metal FFF is rapidly maturing, with machines still becoming more capable and reliable. New features continually expand the application base. Many industries are tapping into cutting edge applications with metal FFF.
Long Term View
As metal FFF continues to mature, more materials and capabilities will continue to diversify the applications the technology can be used for. Metal FFF printers will become a regular fixture in manufacturing facilities due to their affordability, accessibility, and versatility when 3D printing metal parts with complex designs.
Powder Bed Fusion
How Powder Bed Fusion Works
A laser mounted on a gantry traces the path of a given layer, precisely fusing the metal powder together.
1. A powder distribution system pushes a new layer of loose powder over the forming part.
2. The laser fuses the next layer, and the process repeats.
3. After printing, parts are de-powdered and post processed as needed.
Differentiators
- Can print specialized parts. This includes ultra-complex geometries, large parts, and large fully dense parts.
- Mature technology. As a result, there is a large material selection and several industry players offering a wide selection of machines.
Considerations
- Price. Powder bed fusion remains expensive, and metal 3D printer price tags for this technology are usually upwards of $500K to acquire and install.
- Operations. Requires a skilled operator to run, significant isolated space on a manufacturing floor, and expensive personal protective equipment (PPE) and facilities modifications. These increase the metal 3D printing cost.
- Dialing in on refined parts. Complex 3D printed metal parts will require many iterations to get a successful and accurate print. The process yields internal stresses, which can lead to cracking and deformation. High-quality parts can be printed once printing and design parameters are dialed in, however.
Current Outlook
Powder bed fusion remains the market leader in the metal 3D printing industry. There are a small number of leading industry players with advanced capabilities, and a class of new entrants attempting to fulfill a specific niche or offer a more cost competitive solution. Industries known for ultra specialized, high-performance applications have led the way in adopting powder bed fusion — including aerospace, automotive, and medical.
Long Term View
It is expected that broader adoption will drive even more innovative applications of powder bed fusion technology. As more industries start to leverage this 3D metal printing technology, more distinct applications will emerge. Increased competition will help drive more accessible machines.
Binder Jetting
Binder jetting uses specialized liquid polymer binders to form parts by adhering loose metal together. This process creates ultra high precision parts in high volume. Binder jetting is the highest potential production additive technology. Markforged offers the PX100, a Binder Jetting machine built for ultra high precision parts.
How it Works
Binder jetting uses a multi-step processes, featuring loose powder and post-print sintering:
- Printing: Parts are printed by an inkjet style printhead that deposits a polymer binding agent onto a powder bed. a binder jetting printer yields green parts.
- Curing: After printing, the build box is baked in a low temperature oven, curing the polymer binder.
- Depowdering: Parts are extricated from the build box using a depowdering machine. Markforged offers both automatic and manual depowdering options.
- Debinding and Sintering: Depowder parts are debound and sintered in furnaces. Typically, debinding and sintering are done in separate furnaces. Sintering binder jetted parts happens in a MIM furnace.
Differentiators
- Fast print speeds. Printing process is extremely fast and can fabricate many parts simultaneously.
- Precision. Precise inkjet heads lend well to creating complex parts and intricate features.
Considerations
- Safety and handling. Use of loose powder can carry safety and handling concerns.
- Price. Minimum acquisition cost is at least $300K. Prices can go upwards of $2M.
- Part size and design constraints. Binder jetting typically works best on smaller parts with more intricate features.
Current outlook
Binder Jetting has gained a foothold in the additive market, with a focus on the luxury goods, automotive, and medical verticals. It will continue growing over the years to come.
Download our Free Guides to Metal 3D Printing
All of the blogs and the information contained within those blogs are copyright by Markforged, Inc. and may not be copied, modified, or adopted in any way without our written permission. Our blogs may contain our service marks or trademarks, as well as of those our affiliates. Your use of our blogs does not constitute any right or license for you to use our service marks or trademarks without our prior permission. Markforged Information provided in our blogs should not be considered professional advice. We are under no obligation to update or revise blogs based on new information, subsequent events, or otherwise.
Never miss an article
Subscribe to get new Markforged content in your inbox