Skip to navigation

Understanding Rapid Prototyping with 3D Printing

Prototyping effectively is an important part of the product life cycle. Through continuously testing and refining iterations, engineers can arrive at a final part design that works with the desired features and performance.


The first commercially available 3D printers birthed the concept of rapid prototyping. Before 3D printing, long lead times and high costs of low-volume parts meant product development teams could only iterate a few times before part designs needed to be finalized.


However, 3D printing slashed these long lead times and costs. Now, 3D printers allow engineers and R&D teams to validate their designs quicker, easier, and more cost effectively than before. Ultimately, this allows more design iterations to be squeezed into a given time frame — teams can arrive at final part designs earlier, and get validated products to market faster.


While the market is still crowded with printers strictly suitable for prototyping use, the emergence of industrial-scale additive manufacturing applies lead time and cost benefits far beyond PLA mockups. Industrial 3D printers now fabricate everything from tooling and specialized end-use parts at the point of need, in just days.


Even as 3D printing continues to expand into more and more end-use applications, rapid prototyping continues to be an impactful way for manufacturers to improve product development. Read this blog to learn about rapid prototyping with 3D printing: what it is, how it works, its relationship to additive manufacturing, plus benefits and considerations.

What is rapid prototyping?

Prototyping is an integral part of product design and engineering. It is an iterative process to arrive at an optimized, test-proven design.


Engineers will design an initial concept model of a part or product to test. Then, they will fabricate a part with the tentative design (the prototype), run it through a suite of tests, and then evaluate the design for upsides and areas of improvement. These activities will be repeated to arrive at a final validated design that satisfies desired customer and engineering requirements.



Rapid prototyping is the use of digital technologies to design and fabricate prototypes faster and easier. Rapid prototyping typically relies on 3D printing technologies to fabricate the prototypes quickly, as it circumvents the need to use tool or die sets.


Beyond physical fabrication of prototypes, rapid prototyping includes engineering activities like design, modification, and testing.



Before rapid prototyping. Before commercial 3D printing, engineers had to rely on a combination of hasty foam mockups and detailed clay models crafted by skilled artisans. This meant far longer lead times for the manufacture of each prototype, as well as higher fabrication costs associated with each prototype part — ultimately allowing for fewer part iterations in each design cycle in any given span of time.

All of the blogs and the information contained within those blogs are copyright by Markforged, Inc. and may not be copied, modified, or adopted in any way without our written permission. Our blogs may contain our service marks or trademarks, as well as of those our affiliates. Your use of our blogs does not constitute any right or license for you to use our service marks or trademarks without our prior permission. Markforged Information provided in our blogs should not be considered professional advice. We are under no obligation to update or revise blogs based on new information, subsequent events, or otherwise.

Never miss an article

Subscribe to get new Markforged content in your inbox

Enviar